Abstract
To develop an automatic setting of a deep learning-based system for detecting low-dose computed tomography (CT) lung cancer screening scan range and compare its efficiency with the radiographer's performance. This retrospective study was performed using 1984 lung cancer screening low-dose CT scans obtained between November 2019 and May 2020. Among 1984 CT scans, 600 CT scans were considered suitable for an observational study to explore the relationship between the scout landmarks and the actual lung boundaries. Further, 1144 CT scans data set was used for the development of a deep learning-based algorithm. This data set was split into an 8:2 ratio divided into a training set (80%, n=915) and a validation set (20%, n=229). The performance of the deep learning algorithm was evaluated in the test set (n=240) using actual lung boundaries and radiographers' scan ranges. The mean differences between the upper and lower boundaries of the deep learning-based algorithm and the actual lung boundaries were 4.72 ± 3.15 mm and 16.50 ± 14.06 mm, respectively. The accuracy and over-scanning of the scan ranges generated by the system were 97.08% (233/240) and 0% (0/240) for the upper boundary, and 96.25% (231/240) and 29.58% (71/240) for the lower boundary. The developed deep learning-based algorithm system can effectively predict lung cancer screening low-dose CT scan range with high accuracy using only the frontal scout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.