Abstract

HLA laboratories use virtual crossmatching (VXM) to predict recipient and donor compatibility using HLA antibody data and donor HLA type. Increasingly, transplant centers are utilizing VXM as the final compatibility determination prior to transplant. However, the VXM interpretation is based on HLA experience of individual transplant centers. This study developed data-driven algorithms that predicted flow cytometric crossmatch (FCXM) outcomes using HLA antibody mean fluorescent intensity (MFI) data and donor HLA typing without the need for human interpretation.Two algorithms were evaluated; an MFI Optimal-Threshold model and a Least-Squares-Fitting model. The Optimal-Threshold model correctly determined between 81.5% and 85.5% of T or B-cell responses. A class I antibody MFI threshold of 4670 was optimal for predicting T-cell response while an antibody MFI threshold of 6180 was optimal for predicting B-cell responses. HLA class I antibodies had a 1.47-fold greater influence on FCXM outcomes than class II antibodies. HLA-B antibodies influenced T and B-cell responses more than HLA-A or -C (-B > -A > -C). The Least-Squares-Fitting model increased accuracy to 94.1% and 88.8% for T and B-cell responses, respectively. The algorithms described here provide enhanced FCXM prediction and novel insights into the influence of specific HLA antibodies on the crossmatch outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.