Abstract
HSA (human serum albumin), a most abundant protein in blood serum, plays a key role in maintaining human health. Abnormal HSA level is correlated with many diseases, and thus has been used as an essential biomarker for therapeutic monitoring and biomedical diagnosis. Development of small-molecule fluorescent probes allowing the selective and sensitive recognition of HSA in in vitro and in vivo is of fundamental importance in basic biological research as well as medical diagnosis. Herein, we reported a series of new synthesized fluorescent dyes containing D-π-A constitution, which exhibited different optical properties in solution and solid state. Among them, dye M−H−SO3 with a hydrophilic sulfonate group at electron-acceptor part displayed selectivity for discrimination of HSA from BSA and other enzymes. Upon binding of dye M−H−SO3 with HSA, a significant fluorescence enhancement with a turn-on ratio about 96-fold was triggered. The detection limit was estimated to be ∼ 40 nM. Studies on the interaction mechanism revealed that dye M−H−SO3 could bind to site III of HSA with a 1:1 binding stoichiometry. Furthermore, dye M−H−SO3 has been applied to determine HSA in real urine samples with good recoveries, which provided a useful method for HSA analysis in biological fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.