Abstract
NGR peptides that recognize CD13 receptors in tumor neovasculature are of high interest, in particular due to their potential applications in drug targeting. Here we report the synthesis and structural analysis of novel thioether bond-linked cyclic NGR peptides. Our results show that their chemostability (resistance against spontaneous decomposition forming isoAsp and Asp derivatives) strongly depends on both sample handling conditions and structural properties. A significant correlation was found between chemostability and structural measures, such as NH(Gly)-CO(Asn-sc) distances. The side-chain orientation of Asn is a key determining factor; if it is turned away from HN(Gly), the chemostability increases. Structure stabilizing factors (e.g., H-bonds) lower their internal dynamics, and thus biomolecules become even more resistant against spontaneous decomposition. The effect of cyclic NGR peptides on cell adhesion was examined in A2058 melanoma cell lines. It was found that some of the investigated peptides gradually increased cell adhesion with long-term characteristics, indicating time-dependent formation of integrin binding isoAsp derivatives that are responsible for the adhesion-inducing effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.