Abstract

The neurotensin receptor NTS1 has been suggested to be of pharmaceutical relevance, as it was found to exert modulatory effects on dopaminergic signal transduction and to be involved in tumor progression. Rational drug design of NTS1 receptor ligands requires molecular insights into the binding behavior of a particular lead compound. Although crystal structures of NTS1 have revealed the molecular determinants of peptide-agonist interactions, the binding mode of small-molecule antagonists remains largely unknown. Employing a disulfide-based tethering approach, we developed covalently binding molecular probes. The ligands 1 and 2 are based on the pharmacophore of the nonpeptidic NTS1 antagonist SR142948A, allowing the formation of a disulfide bond to an engineered cysteine residue of NTS1. The position of the covalent bond between Cys127(2.65) and the ligand was used to predict the binding mode of the covalent antagonist 1 and its parent compound SR142948A by molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.