Abstract

The knowledge of convective heat transfer coefficient hcpf (absorber plate to flowing air) is necessary to predict or evaluate thermal performance of any solar dryer. In order to determine hcpf, laboratory models of direct (cabinet), indirect and mixed mode solar dryer are designed and constructed to perform no-load steady state experiments for natural and forced air circulation. The dryers are operated under indoor simulation conditions for absorbed thermal energy and air flow rate for the range of 300–800W/m2 and 1–3m/s, respectively. Separate methods depending on mode of heat utilisation are proposed for determination of hcpf for different dryers. Correlations of hcpf in terms of dimensionless numbers are developed for each dryer operating under natural and forced convection. Levenberg–Marquardt algorithm is used to develop temperature dependent correlations. A close agreement between experimental and predicted hcpf values obtained from proposed correlations for natural convection dryers demonstrates their reliability. However, for forced convection dryers, there is a need to use temperature dependent Nu–Re correlation for more accurate results. The low uncertainty ranging from 0.3% to 0.8% in the determination of hcpf confirms the accuracy of experimental data obtained for various dryer designs operated under different conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call