Abstract

The detection of alpha and beta contamination locations is important for decontaminating nuclear facilities. In the high radiation dose rate environment at the decommissioning sites, the contamination measurement by the workers is not effective. Thus, we developed a remote automatic contamination measurement system using a new scintillator-based detector. A 50 mmφ × 100-μm-thick YAlO3(Ce)(YAP:Ce) scintillator was coupled with a flat panel-type multianode photomultiplier tube. The detector was installed downwards at the bottom of a robot. It has an energy measurement capability, and the energy measurement could discriminate the alpha particles from the beta and 222Rn alpha particles. With the energy information, alpha and beta particles could be identified and mapped simultaneously. In addition, a slow-moving robot could be used to obtain statistically sufficient counts in a single run measurement, allowing the evaluation of surface contamination density using only alpha particles. The remote automatic contamination measurement system will be useful in visualizing the contamination distribution in environments that are inaccessible to workers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call