Abstract
ABSTRACT Electronic textiles (e-textiles) are undergoing rapid technological advancements to attain e-textiles that look and feel like conventional textile fabrics. Research seeks to develop highly functionalized textile-based sensors, actuators, and energy storage devices that integrate seamlessly with current textile technologies. Presently, developments are limited by either low electrical performance, or high cost and complex construction. Additionally, negotiating the balance between high performing e-textiles and environmentally benign production is a challenge. In this report, green synthesized silver nanoparticles (AgNPs) are composited with the conjugated polymer, polypyrrole (Ppy), to create a low-cost conductive textile fabric. A Plackett–Burman design of experiment was used to optimize lime peel extract (LPE) mediated reduction for the synthesis of AgNPs. The results of this optimization process revealed silver nitrate concentration to be a significant factor in both size and UV-vis absorption maxima of the LPE-synthesized AgNPs, and reaction temperature also affecting UV-vis absorption maxima. The resultant optimized AgNPs were consistent in size (40–80 nm) and dispersity (PDI = 0.250). The LPE-synthesized AgNPs are used to form a AgNP-Ppy nanocomposite with a linen textile to produce an e-textile with low electrical resistance (37 Ω).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.