Abstract
An electrochemical paper-based sensor was developed for the detection of bacterial infection (BI)-specific biomarker procalcitonin (PCT). Reduced graphene oxide-gold nanoparticles (rGO-AuNP) and poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were synthesized and were fabricated to a disposable, portable, and inexpensive cellulose fiber paper (CFP) substrate. rGO-AuNP-PEDOT:PSS nanocomposite-modified conductive paper-based biosensing platform was efficaciously fabricated by a constant and simple coating procedure. rGO-AuNP-PEDOT:PSS nanocomposite-modified conductive paper electrode was found to provide a sensitive and conductive substrate for PCT detection. The presence of rGO-AuNP-PEDOT:PSS nanocomposite on CFP substate was investigated by Fourier transform infrared spectrometry, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, and X-ray diffraction studies. The electrochemical behavior of rGO-AuNP-PEDOT:PSS @CFP surface was studied with impedance spectroscopy, cyclic voltammetry, and chronoamperometry techniques. This low-cost paper-based biosensor has a linear range for PCT of 1 × 103 to 6 × 107fgmL-1. This developed sensor exhibited good reproducibility with a relative standard deviation (RSD) of about 3.7%. The proposed CFP-based biosensor has been proven as an accelerated simple point-of-care (POC) exploratory approach for early PCT diagnosis in inadequate areas with limited production facilities, computational techniques, and highly skilled experts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.