Abstract

Bottom-up proteomics provides often small amounts of highly complex samples that cannot be analysed by direct mass spectrometry (MS). To gain a better insight in the sample composition, liquid chromatography (LC) and (comprehensive) two-dimensional liquid chromatography (2D-LC or LC × LC) can be coupled to the MS. Low-flow separations are attractive for HRMS analysis, but they tend to be lengthy. In this work, a low-flow, online, actively modulated LC × LC system, based on hydrophilic-interaction liquid chromatography (HILIC) in the first dimension and reversed-phase liquid chromatography (RPLC) in the second dimension, was developed to separate complex mixtures of peptides. Miniaturization permitted the analysis of small sample amounts (1–5 μg) and direct coupling with micro-ESI MS (1 μL min−1). All components were focused and automatically transferred from HILIC to RPLC using stationary-phase-assisted active modulation (C18 traps) to deal with solvent-incompatibility or dilution issues. Optimization of the setup was performed for the HILIC columns and the RPLC columns to provide a more efficient separation and higher identification rates than obtained using one-dimensional (1D) LC. A 60% increase in peak capacity was obtained with the 2D setup compared to a 1D-RPLC separation and a 17–34% increase in the number of proteins identified was achieved for the samples analysed (2D-yeast-8280 peptides and 2D-kidney tissue-8843 peptides), without increasing the analysis time (2 h).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call