Abstract

Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8 x 6 arrays of coating elements that are discretely deposited on a single plastic substrate. Each coating element of the library is 10 mm in diameter and 2-5 microm thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the coating materials undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at a single or multiple abrasion conditions followed by the high-throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0-30% haze. System precision of 0.1-2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. Although the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied for a variety of other applications for which materials ranking can be achieved using optical spectroscopic tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call