Abstract
Advanced amorphous coatings consisting of Co-based metallic glasses with ultrahigh strength (6 GPa) and high microhardness (up to 17 GPa) can significantly improve the surface properties of matrix materials. However, the intrinsic brittleness of Co-based metallic glasses can lead to the initiation of microcracks caused by the inevitable generation of thermal stress during the laser cladding process, which severely limits the potential application. In this paper, the methods of increasing substrate temperature and fabricating composite coatings with the addition of toughened Fe powders were adopted to inhibit the generation of microcracks in the Co55Ta10B35 amorphous coatings. Moreover, neutron shielding performances of the cladding coatings with high B content were investigated with a wide range of neutron energy (wavelength: 0.15–0.85 nm). The results indicate that the fully amorphous coating and composite ones can be fabricated successfully. The increase in the substrate temperature and the addition of Fe powders can effectively inhibit the initiation and propagation of microcracks. The fully Co-based amorphous coating with high B content (35 at.%) can exhibit excellent neutron shielding performance. With the addition of Fe powders, the neutron shielding performance is reduced gradually due to the dilution effect of B in the composite cladding coatings, but the microcrack will be completely restrained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.