Abstract
A Corrected Moving Particle Semi-implicit (CMPS) method is proposed for the accurate tracking of water surface in breaking waves. The original formulations of standard MPS method are revisited from the view point of momentum conservation. Modifications and corrections are made to ensure the momentum conservation in a particle-based calculation of viscous incompressible free-surface flows. A simple numerical test demonstrates the excellent performance of the CMPS method in exact conservation of linear momentum and significantly enhanced preservation of angular momentum. The CMPS method is applied to the simulation of plunging breaking and post-breaking of solitary waves. Qualitative and quantitative comparisons with the experimental data confirm the high capability and precision of the CMPS method. A tensor-type strain-based viscosity is also proposed to further enhanced CMPS reproduction of a splash-up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.