Abstract
<p>Indonesia is one of the tropical regions with strong solar radiation exposure throughout the year, and this indicates the large potential for solar energy utilization in the country. Nevertheless, the utilization of solar energy in Indonesia until 2020 had only reached 10 MWp, as reported by the Ministry of Energy and Mineral Resources (ESDM), which is very small compared to the total potential of solar energy in Indonesia (approximately 112,000 GWp). One of the challenges for the development of solar energy in Indonesia is the weather and climate factors, as several weather parameters can cause intermittency in solar energy input in this region.</p><p>In the solar energy sector, a reliable forecast of potential energy input is of great importance in designing operational plans, whether it is a short-term, annual, or longer-term work plan. Global horizontal irradiance is an important quantity to determine the power generated from photovoltaic devices, and different resources are used to generate global radiation forecasts all over the world, ranging from ground-observed radiation, remote sensing observation, to numerical weather models. The European Centre for Medium-Range Weather Forecasts (ECMWF) provides solar radiation forecasts for various timescales, from hourly forecast to monthly and seasonal forecast. Whilst short-term solar radiation forecast is provided by other standard weather forecasting models, forecasts in the longer timescale are less commonly available and thus the seasonal forecast becomes a valuable information in making long-term operational plans.</p><p>A new solar radiation observation network has been installed in a number of locations across Indonesia in recent years, which allows the evaluation and modification of the seasonal forecast generated by the model. To improve the performance of the forecast, a statistical post-processing approach is implemented, by making use of measurements provided by the radiation observation network and ERA5 reanalysis dataset. To generate historical solar radiation data in all parts of Indonesia, a co-kriging interpolation of the ground-observed solar radiation is executed, using reanalysis data as an external drift in the interpolation process. The new gridded solar radiation data is then utilized to create transfer functions that represent the relationship between the statistical moments of both the numerical model output and observed radiation based on its probabilistic distributions. The transfer functions are generated in the training period, which will then be used to modify the model output in the forecast period. The implementation of the bias-correction process applied in this explorative study is aimed to provide the foundation of solar radiation prediction information that will support the operational activities of solar energy production in Indonesia.</p>
Highlights
OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications
OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)
UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30
Summary
OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.