Abstract
ABSTRACTBoth the acute toxicity and chronic toxicity data on aquatic organisms are indispensable parameters in the ecological risk assessment priority chemical screening process (e.g. persistent, bioaccumulative and toxic chemicals). However, most of the present modelling actions are focused on developing predictive models for the acute toxicity of chemicals to aquatic organisms. As regards chronic aquatic toxicity, considerable work is needed. The major objective of the present study was to construct in silico models for predicting chronic toxicity data for Daphnia magna and Pseudokirchneriella subcapitata. In the modelling, a set of chronic toxicity data was collected for D. magna (21 days no observed effect concentration (NOEC)) and P. subcapitata (72 h NOEC), respectively. Then, binary classification models were developed for D. magna and P. subcapitata by employing the k-nearest neighbour method (k-NN). The model assessment results indicated that the obtained optimum models had high accuracy, sensitivity and specificity. The model application domain was characterized by the Euclidean distance-based method. In the future, the data gap for other chemicals within the application domain on their chronic toxicity for D. magna and P. subcapitata could be filled using the models developed here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.