Abstract

BackgroundChrysomya albiceps (Wiedemann, 1819) (blowflies), family Calliphoridae, is important in forensic entomology, where the minimum and maximum postmortem intervals (PMI) are estimated on the basis of the developmental stages of Diptera larvae that consume dead tissue. The present study was designed to estimate the effects of different ambient temperatures (20, 25, and 30 °C) under controlled laboratory conditions on the developmental stages of C. albiceps from the Jazan region, Saudi Arabia.ResultsThe present study showed that the larval body weight and length were significantly increased when larvae were reared at 30 °C compared with corresponding values at 24 h, 48 h, and 72 h at rearing temperatures of 20 °C and 25 °C; however, the weight and length were significantly decreased compared with corresponding values at 96 h at 20 °C and 25 °C. The pupation time was inversely related to the rearing temperature, occurring at 144, 124, and 120 h at rearing temperatures of 20 °C, 25 °C, and 30 °C, respectively. The pupal weight and length were significantly increased in larvae reared at 30 °C compared with those reared at 20 °C and 25 °C. At 20 °C, 25 °C, and 30 °C, larval durations of 5.00, 5.00, and 4.00 days were recorded, respectively. Pupae and adults showed gradual decreases in life stage durations, at 6.00, 5.30, and 4.80 days in pupae and 20.00, 18.70, and 16.90 days in adults, with increasing rearing temperatures. Average adult longevity at 30 °C (194.40 h) was significantly less than adult longevity at 20 °C (216.00 h) and 25 °C (204.60 h). The results showed an inverse relation between durations of developmental stages and rearing temperatures.ConclusionsInsect laboratory colonization for the determination of biological characteristics of insects is economically viable for forensic entomology and as a technique for evaluating insect evidence.

Highlights

  • Chrysomya albiceps (Wiedemann, 1819), family Calliphoridae, is important in forensic ento‐ mology, where the minimum and maximum postmortem intervals (PMI) are estimated on the basis of the develop‐ mental stages of Diptera larvae that consume dead tissue

  • Forensic entomology evaluates the succession of necrophagous insects and the larval age of relevant insects collected from decomposed remains to estimate the time elapsed since death; entomological analysis is a tool in forensic investigations and can provide evidence of the postmortem interval (PMI) in a court of law

  • There was a significant increase in the larval body weight in the group reared at 25 °C compared with the corresponding weights in larvae reared at 20 °C at 24, 48, 72, 96, and 120 h

Read more

Summary

Introduction

Chrysomya albiceps (Wiedemann, 1819) (blowflies), family Calliphoridae, is important in forensic ento‐ mology, where the minimum and maximum postmortem intervals (PMI) are estimated on the basis of the develop‐ mental stages of Diptera larvae that consume dead tissue. Forensic entomology evaluates the succession of necrophagous insects and the larval age of relevant insects collected from decomposed remains to estimate the time elapsed since death; entomological analysis is a tool in forensic investigations and can provide evidence of the postmortem interval (PMI) in a court of law. Forensic entomology examines insect evidence for forensic and legal purposes to estimate the minimum time since death. The collected entomological evidence can provide necessary and important information about the movement or storage of remains following death, submersion interval, time of decapitation and/or dismemberment, identification of specific trauma sites, and postmortem artifacts on the body. Determination of the time since death is temperature dependent because temperature affects insect development as well as insect access to corpses (Campobasso et al 2001; Myskowiak and Doums 2002)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.