Abstract

In the present study, we used immunocytochemistry to study the temporal and spatial arrangement of mouse cholinergic amacrine cells during postnatal retinal development under normal light/dark cycles and during visual deprivation. Choline acetyltransferase (ChAT)-immunolabeled cells were detected in the neuroblastic layer (NBL) and in the ganglion cell layer (GCL) at postnatal day 0 (P0). Between P3-5, two characteristic cholinergic bands were clearly identified in the inner plexiform layer (IPL). The signal intensity of somas and processes progressively increased over the first 2 postnatal weeks. Around eye opening at P12, cholinergic neurons were mature-like. This early developmental process was not altered by visual deprivation. After eye opening, the space between the two cholinergic bands increased continuously and the spatial regularity index changed constantly, indicating that the cholinergic neurons possibly underwent refinement during later postnatal development. The changes occurring following eye opening were retarded by visual deprivation. The morphologies of photoreceptors, horizontal cells, recoverin-positive OFF-cone bipolar cells, rod bipolar cells, dopaminergic amacrine cells, and Müller cells appeared normal. Their stratification in the outer plexiform layer (OPL) and the IPL was not affected by visual deprivation. However, glial cells grew vertically across the entire thickness of dark-reared retinas. Our results suggest that the development of cholinergic neurons before eye opening is independent of the lighting conditions. Their development after eye opening is greatly impeded by visual deprivation. This visual activity-dependent phase of development may be a critical period for the maturation and synaptic wiring of cholinergic amacrine cells in the mammalian retina.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.