Abstract

The use of natural polymeric nanoparticles (Nps) as drug carriers is a highly promising area of research in the field of drug delivery systems because of their high efficiency. In this study, flurbiprofen (FB) loaded chitosan-graphene oxide (CS-GO) blend Nps were synthesized as a controlled delivery system using the emulsion method. The crystalline, molecular, and morphological structures of the prepared CS-GO Nps were characterized using a variety of analytical methods, including Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-Ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was found that the introduction of GO into the CS nanoparticle formulation increased its thermal stability. The range of the average particle size was between 362 ± 5.06 and 718 ± 2.21 nm, with negative zeta potential values between −7.67 ± 4.16 and − 27.93 ± 2.26 mV. The effects of the CS/GO ratio, the FB/polymer ratio, the amount of span 80, and the cross-linker concentration were assessed on FB release profiles. In vitro release studies displayed a two-stage release behaviour with a fast initial release of the FB, followed by sustained and extended release, and the incorporation of GO into the CS Nps made the FB release more sustained and controlled manner. Besides, the cytotoxicity test of the FB-loaded CS-GO Nps was studied through MTT assay, and it was found that they were biocompatible. Based on these findings, it can be inferred that the prepared CS-GO Nps might be a promising candidate drug carrier system for FB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call