Abstract

Pediatric patients are in a growing stage with more dividing cells than adults. Therefore, they are more sensitive to the radiation dose when undergoing computed tomography (CT) scanning. It is necessary and essential to assess the organ absorbed dose and effective dose to children. Monte Carlo simulation with computational phantoms is one of the most used methods for dose calculation in medical imaging and radiotherapy. Because of the vast change of the pediatric body with age increasing, many research groups developed series pediatric phantoms for various ages. However, most of the existing pediatric reference phantoms were developed based on Caucasian populations, which is not conformable to Chinese pediatric patients. The use of different phantoms can contribute to a difference in the dose calculation. To assess the CT dose of Chinese pediatric patients more accurately, we developed the Chinese pediatric reference phantoms series, including the 3-month (CRC3m), 1-year-old (CRC01), 5-year-old (CRC05), 10-year-old (CRC10), 15-year-old male (CRCM15), and a 15-year-old female (CRCF15) phantoms. Furthermore, we applied them to dose assessment of patients undergoing CT scanning. The GE LightSpeed 16 CT scanner was simulated and the paper presents the detailed process of phantoms development and the establishment of the CT dose database (with x-ray tube voltages of 120, 100 and 80 kVp, with collimators of 20, 10, and 5 mm width, with filters for head and body), compares for the 1-year-old results with other results based on different phantoms and analyzes the CT dose calculation results. It was found that the difference in phantoms’ characteristics, organ masses and positions had a significant impact on the CT dose calculation outcomes. For the 1-year-old phantom, the dose results of organs fully covered by the x-ray beam were within 10% difference from the results of other studies. For organs partially covered and not covered by the scan range, the maximum differences came up to 84% (stomach dose, chest examinations) and 463% (gonads dose, chest examinations) respectively. The findings are helpful for the dose optimization of Chinese pediatric patients undergoing CT scanning. The developed phantoms could be applied in dose estimation of other medical modalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call