Abstract

Cancer gene therapy has been of great challenge in achieving maximal high levels of specificity and more rational efficiency in target cancer cell. We herein developed a novel approach for cancer-specific gene therapy using both transcriptional and translational targeting regulation. We integrated the tumor-specific gene promoter of hTERT, the 5'UTR of bFGF-2, the enhancer of woodchuck hepatitis virus post-transcriptional regulatory element (WRE), and/or the 3'UTR of the human EGFR into two major chimeric gene regulators. We found that chimeric gene regulator I (hTERT_5'UTR...WRE_BGHpolyA) enhanced the specificity of expression in hepatocellular carcinoma (HCC) cells up to 300% in total due to increases at both the transcriptional and translational levels but only 120-200% enhancement at the transcriptional level and 120-180% enhancement at the translational level. In addition, chimeric gene regulator II (hTERT_5'UTR...WRE_3'UTR_BGHpolyA) improved the specificity to 550% and also highly strengthened the stability of the mRNA. In vitro cytotoxicity assays demonstrated that HCC cell growth was inhibited by HSV-1 TK expression under the control of both chimeric regulators, with a relative cell viability of approximately 80% for 2 days and approximately 85% for 4 days after transfection, respectively. These observations represent a new approach for highly tumor-specific gene expression and also provide insights into application to cancer gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.