Abstract

This study evaluated the potential of Vis-NIR and Raman spectral data fusion combined with PLS and SVM chemometric models developed using a large dataset (n = 1700) of commercial infant formula (IF) samples to (i) discriminate between different IF storage temperature (20, 37 °C) and (ii) predict IF storage time (0–12 months). Three interval-based PLS variable selection methods (forward interval PLS (FiPLS), backward interval PLS (BiPLS) and synergy interval PLS (SiPLS)) and SVM-recursive feature elimination (SVM-RFE) methods were compared for model development. The best IF storage temperature discrimination model was developed using SVM classification (SVMC) and Vis-NIR spectra (400–2498 nm) (AccuracyCV = 99.82%, AccuracyP = 100%). SVM regression (SVMR) models developed using medium level data fusion (features selected by SVM-RFE) had the lowest root mean square error (RMSE) values for IF samples stored at either temperature, 20 °C or 37 °C (RMSECV = 0.7–0.8, RMSEP = 0.6–0.9). Industrial relevanceSpectroscopic technologies, including Vis-NIR and Raman spectroscopy have been widely applied for process analysis and increasingly for on-line process monitoring in areas of chemicals, food processing, agriculture and pharmaceuticals, etc. Due to their rapid measurement and minimal or no sample preparation, they are highly suitable for in-line process monitoring. This study demonstrates that Vis-NIR and Raman process analytical tools either individually or combined may be employed for quality assessment and process control of IF manufacture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call