Abstract

Water pollution in response to accelerated land-use/land cover changes has drawn concerns because of public health and environmental impacts. The study was conducted to evaluate the impact of land use/land cover changes, seasonal, and location on water quality of streams within the Wheeler Lake Watershed basin in northern Alabama. Temporal water samples from 18 sheppard streams were randomly collected in 2000 and 2001, processed and analyzed for pH, and total nitrogen (TN), dissolved (Dp), particulate (Pp) and total phosphorus (Tp), dissolved oxygen (DO) and soluble lead (Pb) concentration, employing standard methods of analysis. The data were normalized and integrated into a simple index (WQCIndex) to evaluate stream water quality. Results showed that the urban proportion of the total watershed basin had increased from 2.9 to 14.7% with an associated loss of agricultural (8.9%) and wetland (4.8%) covers from 1992 to 2000. A change in land-use/land covers in association with seasonal and location variation significantly affected stream water quality. Total nitrogen concentration in stream water had a peak during the summer at 34% above the annual mean. While both Pp and Tp concentrations peaking during the summer at 24% above the annual mean and about 25% below the annual mean during spring, the DO concentrations were 46% above the annual mean during the fall and 18 to 26% below annual mean during summer. The WQCIndex had responded very seasonal and showed significant identical trends, with 21% degradation in water quality during the summer above the annual mean and improvement during the spring at 20% above the annual mean. Upstream water had a significantly greater Pp and Tp (21 to 28%) concentration than at down- and middle streams water. Location and seasonal variations had significant interactive effects on Pp, Tp and DO concentration of stream water. Total amount of seasonal rainfall significantly accounted 99.6% of the variations in WQCIndex. Increasing seasonal mean relative humidity, air and soil temperature, evaporation and solar radiation had positive relationship with the variations in WQCIndex. Among the water quality parameters, both Pp and Tp were correlated (r 2 = 0.998∗*∗) to each other, and accounted for more than 80% variability of the WQCIndex. Highly significant positive linear relationship between Pp and Tp concentration suggested that 99.8% of the P in stream water is in Pp form which probably transported with sediments in surface runoff. In other words, Pp is the main pollutant responsible for degradation of stream water quality in the Wheeler lake basin. Routine measurement of either Pp or Tp concentration could be used as sensitive and early indicator of temporal changes in stream water quality even when the other parameters changed negligibly or remain unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.