Abstract

The aim of this research is to develop an in-process detection of the chatter for the actual milling processes regardless of any cutting condition within the small data processing time by utilizing the dynamic cutting forces obtained during cutting. The proposed method introduces three parameters, which are calculated and obtained by taking the ratio of the average variances of the dynamic cutting forces of three force components, to identify the chatter. The algorithm was developed and implemented on five-axis computer numerical control machining center to detect the chatter in ball-end milling and end milling processes. The chatter and the nonchatter can be simply detected during the in-process cutting by mapping the obtained values of three parameters in the reference feature spaces regarding the determined threshold values. The experimental results showed that the proposed method can be effectively used to detect the chatter during cutting even though the cutting conditions are changed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.