Abstract

The forms, disposition, and cytoskeletal contents of astroglia in immature mouse cerebellum were studied by immunocytochemical staining with antisera against two intermediate filament proteins, vimentin (Vim) (58,000 daltons) and glial filament protein (GF) (51,000 daltons). From embryonic (E) Day 15 to postnatal (P) Day 2, Vim is expressed in cells throughout the cerebellar anlage, including radial glia and Bergmann fibers, cells with amorphous shapes and 2–3 processes, and thick longitudinal elements oriented parallel to axons within axon tracts. GF is not expressed during the first few postnatal days, but by P7, there is a dramatic increase in GF-positive astrocyte-like cells in the putative white matter that are more densely stained and more crowded than at any other age. Between P7 and P14 all astrocytes throughout the cerebellum express both Vim and GF. From P21 on, Vim expression is progressively rarer in all astrocytes except for Bergmann fibers, and GF-positive astrocytes become less numerous. These findings raise two issues: (a) the lineage and relationships of cells expressing Vim and GF; (b) Since GF-positive cells appear as axon ingrowth ceases, axons must grow in a terrain comprised of glial cells that have a different cytoskeletal composition (vimentin), reflecting a less differentiated state, than mature astrocytes or than the GF-rich astrocytes that proliferate after injury in adult CNS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.