Abstract

Mixed solutions of PAN with cellulose in N-methylmorpholine-N-oxide (NMMO) were prepared. Systems with a fraction of a dispersed phase of a cellulose solution in NMMO up to 40% are characterized by the formation of fibrillar morphology. The fibrils created as the mixed solution is forced through the capillary take on a more regular order as the cellulose content in the system drops. The systems' morphology is considered to range from a heterogeneous two-phase solution to regular fibrils. The generated morphology, in which the cellulose fibrils are encircled by the PAN, can be fixed by spinning fibers. Cellulose fibrils have a diameter of no more than a few microns. The length of the fibrils is limited by the size of the fiber being formed. The process of selectively removing PAN was used to isolate the cellulose microfibrils. Several techniques were used to evaluate the mechanical properties of isolated cellulose microfibers. Atomic force microscopy allowed for the evaluation of the fiber stiffness and the creation of topographic maps of the fibers. Cellulose microfibers have a higher Young's modulus (more than 30 GPa) than cellulose fibers formed in a comparable method, which affects the mechanical properties of composite fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.