Abstract

The utilization of nano-biodegradable composites for removing pollutants and heavy metals in aquatic environments has been widespread. This study focuses on synthesizing cellulose/hydroxyapatite nanocomposites with titanium dioxide (TiO2) via the freeze-drying method for the adsorption of lead ions in aquatic environments. The physical and chemical properties of the nanocomposites, including structure, morphology, and mechanical properties, were analyzed through FTIR, XRD, SEM, and EDS. In addition, parameters affecting the adsorption capacity, such as time, temperature, pH, and initial concentration, were determined. The nanocomposite exhibited a maximum adsorption capacity of 1012 mg⸱g−1, and the second-order kinetic model was found to govern the adsorption process. Additionally, an artificial neural network (ANN) was created using weight percentages (wt%) of nanoparticles included in the scaffold to predict the mechanical behavior, porosity, and desorption of the scaffolds at various weight percentages of hydroxyapatite (nHAP) and TiO2. The results of the ANN indicated that the incorporation of both single and hybrid nanoparticles into the scaffolds improved their mechanical behavior and desorption, as well as increased their porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call