Abstract

Dendritic structure is the most frequently observed solidification microstructure of alloys. It has a dominant effect on the mechanical properties of alloys. The formation of the dendritic microstructure has attracted extensive attentions. It has been demonstrated that numerical simulation is a powerful tool for studying the microstructure formation during the solidification of alloys. Various models, such as the front-tracking (FT) model, the phase-field (PF) model and the cellular automaton (CA) model have been proposed to simulate the formation process of dendrite. Compared with other methods, CA is an effective numerical simulation method with high calculation efficiency and clear physical meaning. It is more suitable to be applied to simulate the formation kinetics of the dendritic microstructure of alloys. It has been widely applied in the investigation of the solidification of alloys. This paper makes a detailed introduction to the common process of CA modeling and simulation, the constructing method of CA model and the calculation method for some key parameters such as nucleation rate of nuclei, growth velocity of dendrite, etc. A review of the development of the CA models for the solidification of alloys is carried out. The features and applications of the existing CA models are critically assessed. The applications of the CA models in the investigations of the practical solidification process are summarized. The problems to be solved and the future development of CA models are also pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.