Abstract
The zebrafish is an established model for the genetic analysis of vertebrate development. Forward-genetic screens have generated thousands of mutations, and antisense-based methods have been used to transiently knockdown gene expression during embryogenesis. Although these methods have made the zebrafish a valuable system for the identification and functional characterization of developmentally important genes, one deficiency of the zebrafish model is the absence of methods to introduce targeted mutations to generate knockout lines of fish. Application of gene-targeting methods has been limited in nonmurine species due to the absence of germ-line competent embryonic stem (ES) cell lines. Recently, progress was made in addressing this problem by the derivation of zebrafish embryo cell lines that remain pluripotent and germ-line competent for multiple passages in culture. Zebrafish germ-line chimeras were generated using cultures derived from embryos at two different developmental stages, and targeted insertion of vector DNA by homologous recombination was demonstrated in both cultures. Several strategies are being used to optimize the production and identification of germ-line chimeras. The zebrafish embryo cell culture system should provide the basis of a gene-targeting approach that will complement other genetic strategies and improve the utility of the zebrafish model for studies of development and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.