Abstract

AbstractUsing the existing measures for training numerical (non-categorical) prediction models can cause misclassification of droughts. Thus, developing a drought category-based measure is critical. Moreover, the existing fixed drought category thresholds need to be improved. The objective of this research is to develop a category-based scoring support vector regression (CBS-SVR) model based on an improved drought categorization method to overcome misclassification in drought prediction. To derive variable threshold levels for drought categorization, K-means (KM) and Gaussian mixture (GM) clustering are compared with the traditional drought categorization. For drought prediction, CBS-SVR is performed by using the best categorization method. The new drought model was applied to the Red River of the North Basin (RRB) in the USA. In the model training and testing, precipitation, temperature, and actual evapotranspiration were selected as the predictors, and the target variables consisted of multivariate drought indices, as well as bivariate and univariate standardized drought indices. Results indicated that the drought categorization method, variable threshold levels, and the type of drought index were the major factors that influenced the accuracy of drought prediction. The CBS-SVR outperformed the support vector classification and traditional SVR by avoiding overfitting and miscategorization in drought prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.