Abstract

One technological process employing ozone and heterogeneous catalyst-sorbents was proposed for removal of SO2 from flue gas. The catalyst-sorbents were developed and tested especially for adsorption and oxidation of SO2. Alternative catalyst-supporters including γ-Al2O3, permutite, silica gel, activated carbon and diatomite combined with different metal oxides (MnO2, Cr2O3, Fe2O3, CuO, CoO and NiO) were evaluated and tested. It was found that γ-Al2O3 doped with MnO2 can be considered as removal-effective sorbent for adsorption and oxidation of SO2. The synergetic effect between ozone and catalyst was found to be dominated. Effects of catalyst preparation parameters like calcination temperature, metal loaded and reaction temperature, etc. were investigated based on the MnO2/Al2O3 catalyst-sorbents. Results show that γ-Al2O3 combined with 8% Mn, calcinated under 573 K and reacted at 413 K are the optimal parameters for removal of SO2. Extra NO in flue gas can slightly enhance the capture efficiency of SO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.