Abstract
Gene therapy has become a major focus of current biomedical research. CRISPR (Clustered Regularly Inter spaced Short Palindromic Repeats) systems have been extensively researched for disease treatment applications through genome editing specificity. Compared with Cas9 (CRISPR-associated proteins, Cas), a commonly used tool enzyme for genome editing, Cas13a exhibits RNA-dependent endonuclease activity, including collateral cleavage without obvious potential genetic risks. With its high specificity, Cas13a has significantly improved the sensitivity of viral diagnosis and shown potential to eliminate viruses. However, its efficacy in tumor therapy has not been determined. This review introduces the mechanism and research developments associated with the CRISPR-Cas13a system in tumor treatments and its potential to be used as a new tool for gene therapy. We hope more research would apply Cas13a-based therapy in cancer treatment in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.