Abstract

Aspects of the development of mass spectrometry over the past three decades are briefly reviewed and growth points in the subject are identified. Molecular imaging by mass spectrometry is one such growth area. The development of a capability for 2D chemical imaging of surfaces is described, based on the combination of a desorption electrospray ionization (DESI) ion source with an automated surface stage capable of x, y translational motion. The lateral resolution of this new system is found to be less than 200 microns, using a test ink pattern. Chemical imaging of surfaces is demonstrated using model examples of organic and biological systems: (i) imaging of a 2D pattern written in different colored inks on photographic paper and (ii) imaging of thin coronal sections of rat brain tissue fixed onto a glass microscope slide. In both cases, full mass spectra are recorded as a function of x, y-position on the surface. In the chemical imaging example, the distributions of the two different inks on the paper surface were mapped by tracking the abundance of the intact organic cation which characterizes each particular ink dye. In the tissue imaging example, distributions of specific lipids in coronal sections of rat brain tissue were followed from the abundance distributions in 2D space of the deprotonated lipid molecules recorded in the negative ion mass spectra. These latter distributions reveal distinct anatomical features of the rat brain. The results of these studies demonstrate the feasibility of performing surface imaging studies using DESI and show that at this stage of its development it has a lateral spatial resolution of a few hundred microns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.