Abstract

Site-specific management of crops represents an important improvement in terms of efficiency and efficacy of the different labours, and its implementation has experienced a large development in the last decades, especially for field crops. The particular case of the spray application process for what are called “specialty crops” (vineyard, orchard fruits, citrus, olive trees, etc.) represents one of the most controversial and influential actions directly related with economical, technical, and environmental aspects. This study was conducted with the main objective to find possible correlations between data obtained from remote sensing technology and the actual canopy characteristics. The potential correlation will be the starting point to develop a variable rate application technology based on prescription maps previously developed. An unmanned aerial vehicle (UAV) equipped with a multispectral camera was used to obtain data to build a canopy vigour map of an entire parcel. By applying the specific software DOSAVINA®, the canopy map was then transformed into a practical prescription map, which was uploaded into the dedicated software embedded in the sprayer. Adding to this information precise georeferenced placement of the sprayer, the system was able to modify the working parameters (pressure) in real time in order to follow the prescription map. The results indicate that site-specific management for spray application in vineyards result in a 45% reduction of application rate when compared with conventional spray application. This fact leads to a equivalent reduction of the amount of pesticide when concentration is maintained constant, showing once more that new technologies can help to achieve the goal of the European legislative network of safe use of pesticides.

Highlights

  • ObjectivesThe overall objective of this paper is to find a good correlation between data obtained from remote sensing technologies and canopy characteristics

  • A deep analysis of the obtained data from the 69 sample points evaluated in the parcel indicated a good correlation between canopy area, expressed as TRV (m3canopy·ha-1) and a dedicated index generated after the combination of normalized differential vegetation index (NDVI) and the projected area measured by the unmanned aerial vehicle (UAV) (Fig. 6)

  • The research showed potential savings in pesticide, water and time, by adapting a variable rate application over a vineyard parcel based on canopy maps

Read more

Summary

Objectives

The overall objective of this paper is to find a good correlation between data obtained from remote sensing technologies and canopy characteristics

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.