Abstract

In this article we report a facile method to create a polyaniline (PANI) nanorod/carbon nanoparticle (CNP) composite structure that is suitable for supercapacitor use. A network of CNPs was conveniently produced on the surface of a nickel foam by collecting candle soot above a burning candle. The PANI nanorods were then electrochemically deposited on the CNP network, forming a star-like interconnected 3D structure. As a comparison, MnO2 particles were also deposited on the CNP network to produce a broccoli-like structure. The electrochemical properties of these two composites were examined using cyclic voltammetry, cyclic charge-discharge, and electrochemical impedance spectroscopy. The two electrodes exhibited different electrochemical behaviors: high capacitance at low current densities and marked deterioration at high ones for CNPs/PANI and relatively low but stable capacitance for CNPs/MnO2. The reasons for this distinction were discussed based on the structures and material properties of the electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.