Abstract
The degradation of transport current caused by high mechanical strain on practical Nb3Sn wire is a serious problem for future fusion magnets whose conductor is subjected to high electromagnetic forces. Therefore the increase of mechanical strength of Nb3Sn wire is an important research subject for fusion applications. We applied "internal matrix strengthening" using a solid solution strengthening mechanism to strengthen Nb3Sn wire and also fabricated bronze processed Nb3Sn wires using various ternary bronze alloys containing Indium (In) as the third solute element (Cu-Sn-In). Indium remained in the matrices of these wires after the Nb3Sn synthesis. The Vickers hardness of the Cu-Sn-In ternary matrices after the Nb3Sn synthesis was then higher than those of the conventional bronze and Cu-Sn-Zn ternary matrices. It is suggested that In acts more effectively as the third solute element for the solid solution strength process compared to Zn and that this may contribute to the further mechanical strengthening of Nb3Sn wire. In this study the effect of In as the solute element on microstructure and superconducting properties of bronze processed Nb3Sn wires using various Cu-Sn-In matrices was investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.