Abstract
We have previously presented a microelectromechanical system (MEMS) based viscometric sensor for continuous glucose monitoring using protein Concanavalin A (Con A). To address its drawbacks, including immunotoxicity and instability issues, we have synthesized stable, biocompatible copolymers poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA) for viscosity based glucose sensing. We found that PAA-ran-PAAPBA showed very high binding specificity to glucose. Several key factors such as polymer compositions, polymer molecular weights and polymer concentrations have been investigated to optimize viscometric responses. This polymer is able to detect glucose under physiological pH conditions in a reversible manner. Therefore, it has the potential to enable a highly reliable, continuous monitoring of glucose in subcutaneous tissue using the MEMS device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.