Abstract

Mechanical properties of particulate goat bone reinforced epoxy composite were investigated in this research. This was aimed at assessing the suitability of the developed composites for biomedical applications. The combination of the two materials for the development of the composites was targeted to meet good surface compatibility in addition to the structural compatibility needed as biomaterials. The composites were developed by compounding the matrix and the reinforcement in predetermined proportions and were fabricated by open mould technique. Mechanical properties such as tensile, flexural and hardness properties as well as wear behaviour were tested. From the results, XRF analysis showed that the main elements present in the goat bone ash are calcium and phosphorus with 71.6 and 16.6% contents, respectively. It was observed that improved mechanical properties were obtained for higher wt. percent reinforced composites from 16-20wt. percent compared to lower wt. percent composites from 2-14wt. percent. Bone particulate reinforced epoxy composite developed from 16wt. percent gave the best tensile and flexural properties and also possesses good and favourable hardness properties. However, improved wear resistance was observed at low wt. percent fraction of the reinforcement within 2-6wt. percent. Examination of the fractured surfaces by Scanning Electron Microscopy showed that the particulates were well dispersed within the matrix and the reason for the enhancement in the properties. Sample with optimum performance was 16 wt. percent bone particulate reinforced epoxy composite which has the best combination of mechanical and wear properties. The combination of good properties obtained made the developed composite to be suitable for biomedical application and, therefore, selected as the best composite material for biomedical application having met the structural conditions necessary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.