Abstract

Organic light-emitting diodes (OLEDs) are energy-efficient; however, the coordinating ligand can affect their stability. Sky-blue phosphorescent Pt(II) compounds with a C^N chelate, fluorinated-dbi (dbi = [1-(2,4-diisopropyldibenzo [b,d]furan-3-yl)-2-phenyl-1H-imidazole]), and acetylactonate (acac) (1)/picolinate (pic) (2) ancillary ligands were synthesized. The molecular structures were characterized using various spectroscopic methods. The Pt(II) Compound Two exhibited a distorted square planar geometry, with several intra- and inter-molecular interactions involving Cπ⋯H/Cπ⋯Cπ stacking. Complex One emitted bright sky-blue light (λmax = 485 nm) with a moderate photoluminescent quantum efficiency (PLQY) of 0.37 and short decay time (6.1 µs) compared to those of 2. Theoretical calculations suggested that the electronic transition of 1 arose from ligand(C^N)-centered π-π* transitions combined with metal-to-ligand charge-transfer (MLCT), whereas that of 2 arose from MLCT and ligand(C^N)-to-ligand(pic) charge-transfer (LLCT), with minimal contribution from C^N chelate to the lowest unoccupied molecular orbital (LUMO). Multi-layered phosphorescent OLEDs using One as a dopant and a mixed host, mCBP/CNmCBPCN, were successfully fabricated. At a 10% doping concentration of 1, a current efficiency of 13.6 cdA-1 and external quantum efficiency of 8.4% at 100 cdm-2 were achieved. These results show that the ancillary ligand in phosphorescent Pt(II) complexes must be considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.