Abstract
We investigated the blue excitable persistent luminescence properties in the Ce<sup>3+</sup>-doped garnet ceramics with the composition of Y<sub>3</sub>Al<sub>5-x</sub>Ga<sub>x</sub>O<sub>12</sub>:Ce<sup>3+</sup> (x=0, 1, 2, 3, 3.5, 4). The persistent luminescence was observed in the sample with x=3 and 3.5 by the blue excitation. In these materials, the energy gap between the lowest 5d<sub>1</sub> excited level of Ce<sup>3+</sup> and the conduction band is much closer compared with x=0, 1, 2 samples. As a result, the efficient electron transfer to the electron trap occurs through the conduction band by the blue excitation in the x=3 and 3.5 samples. The thermoluminescence (TL) was observed in all the samples by UV excitation and the TL peaks were shifted to lower energy with increasing Ga content. The decreases of the threshold energy of photoionization and the electron trap depth with increasing Ga content can be caused by lowering conduction band. Therefore, we demonstrated that the persistent luminescence properties, such as storagetable wavelength and persistent decay profile, are controlled by changing Ga content. We also discovered that the persistent luminescence intensity and duration time were improved by co-doping with metal ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.