Abstract

Abstract Inventions begin with the invasion of humans and furnish a better livelihood. In some cases, it turns out to be imperative. The environmental issues of using synthetic polymers, including bio-incompatibility, toxicity, high cost, poor hydrophilicity, and pro-inflammatory degradation of byproducts, are increasing the need for and application of eco-friendly, alternative polymeric substances from medicine to biotechnology, which includes the industries of medicine, cosmetics, confectionery, wastewater treatment, etc., as tissue scaffolds, wound dressings, drug packaging material, dermal fillers, moisturising cream, carriers, sun protectants, antiperspirants, and deodorants; gelling agents; stabilisers, emulsifiers, photographic films, etc. Biopolymers are available in different compounds, produced by microbes, plants, and animals, where microbes, for example, Pseudomonas aeruginosa and Kamagataeibacter sucrofermetans, retain these compounds at an exorbitant level, helping them to sustain adverse conditions. Moreover, compared to plant and animal biopolymers, microbial biopolymers are preferred due to their ease of production, design, and processing at an industrial levels. In this regard, polyhydroxyalkanoates (PHA) and poly-3-hydroxybutyrate (PHB) have together attained assiduity for their biodegradable properties and possess similar features as petrochemical-based polymers, commonly synthetic polymers like polyethylene, polypropylene, etc. This attributes to its non-toxic nature, i.e., it behaves eco-friendly by degrading the components through a carbon-neutral energy cycle to carbon dioxide and water, which lessens the dependence on petroleum-based polymers. This chapter contemplates the methods to develop biopolymers from microbes and their environmental applications, focusing on the confiscation of heavy metals, organic dyes or oils, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call