Abstract

AbstractBiopolymer blend composite films based on polyvinyl alcohol (PVA) and chitosan (CS) incorporated with varying amounts of chicory extract (CE) have been developed by the green solution casting technique. The impact of CE content on structural, thermal, mechanical and electrical properties was thoroughly examined. The existence of intermolecular interactions in the blend composite was confirmed by Fourier‐transform infrared and ultraviolet spectroscopy. The x‐ray diffraction pattern proved the successful preparation of PVA/CS/CE composite film. The scanning electron microscopy images of the composites showed shape and grain size for the different bio‐filler contents. The thermal transition temperature of the blend composites was significantly improved by the addition of CE extract deduced from differential scanning calorimetry. The dielectric study showed that the permittivity remarkably increases with decreasing frequency and maximum dielectric constant was observed for 15 wt% loading. The activation energy obtained from the AC conductivity decreased as the temperature increased. The addition of CE extract improved the hardness and tensile strength of the PVA/CS blend composite in comparison with a pristine pure blend. The controllable mechanical, thermal, optical, and electrical characteristics of the PVA/CS blend composite suggest that it might be an attractive optical material for the advancement of futuristic flexible‐type optoelectronic and energy storage systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call