Abstract

Developing bioactive composites to fill bone cavities caused by disease, injury or surgery still remains a challenge. The aim of this research was to develop a new nanostructured sodium alginate/sulfonated polyether ether ketone/nano-hydroxyapatite (Alg/SPEEK/HA) biocomposite via a simple chemical precipitation strategy. Structural analysis was carried out using X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) was used to compare the HA content of the composites. The in-vitro bioactivity of the composites with different content of HA was investigated by immersing the specimens in the simulated body fluid (SBF) for 15 days. The presence of HA in the composite structure gave rise to the precipitation of an apatite layer on the surface, which was increased by increase in the content of HA. The formation of the HA layer on the composite surface was scrutinized via FESEM and EDX analysis. Transmission electron microscopy (TEM) images exhibited the presence of HA nanoparticles with less than 30 nm in size. The in-vitro cytotoxicity evaluation was also carried out using MG-63 cells via the MTT assay, which revealed that the cytocompatibility of all specimens was increased with raising the HA content. However, the higher concentration (100 μg/ml) of the composites displayed some toxicity against MG-63 cells. These findings, therefore, proposed that the achieved novel nanocomposites could be regarded as promising materials to serve as bone filler.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call