Abstract

Nitrate-nitrogen (NO3-N) contaminating groundwater is an environmental issue in many areas, and is difficult to treat by simple processes. A bio-electrochemical reactor (BER) using copper wire and graphite plate was developed to purify the NO3-N-contaminated groundwater. The low (of 10 mA) and high (of 20 mA) electric currents were applied to the BERs, and various influent hardness levels from 20 to 80 mg/L as CaCO3 due to groundwater characteristics were supplied to clarify the total nitrogen removal efficiency and NO3-N removal mechanisms. In the BER-10, the bio-electrochemical reactions caused 85% of total nitrogen to be removed through heterotrophic and autohydrogenotrophic denitrification in the suspended sludge and biofilm. However, the chemical deposit occurring at the cathode from water hardness affected the decreasing denitrification performance; 12.6% of Mg and 8.8% of Ca elements were observed in the biofilm. The enhancement of electrochemical reactions in the BER-20 caused integrating electrochemical and bio-electrochemical reactions; the NO3-N was electrochemically reduced to NO2-N, and it was further biologically reduced to N2. A better total nitrogen removal of 95% was found; although, a larger deposit of Mg (22.8%) and Ca (10.8%) was observed. The relatively low dissolved H2 in the BER-20 confirmed that the deposit affected the decreasing gaseous H2 transfer and inhibition of autohydrogenotrophic denitrification in the suspended sludge. According to the microbial analysis, both heterotrophic and autohydrogenotrophic denitrification were obtained in the suspended sludge of both BERs; Nocadia (26.8%) was the most abundant genus in the BER-10, whereas Flavobacterium (27.1%) and Nocadia (25.0%) were the dominant genera in the BER-20.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call