Abstract

Recent advances in bionics have made it possible to create various tissue and organs. Using this cell culture technology, engineers have developed a robot driven by three-dimensional cultured muscle cells (bioactuator)—a muscle cell robot. For more applications, researchers have been developed various tissues and organs with bio3D printer. However, three-dimensional cultured muscle cells printed by bio3D printer have been not used for muscle cell robot yet. The aim of our study is to develop easy fabrication method of bioactuator having high design flexibility like as bio3D printer. We fabricated three-dimensional cultured muscle cells using mold and dish having pin which can contribute to shape and cell alignment. In this study, we observed that our method maintained the shape of three-dimensional cultured muscle cells and caused cell alignment which is important for bioactuator development. We named three-dimensional cultured muscle cells developed in this study “bio-cultured artificial muscle (BiCAM)”. Finally, we observed that BiCAM contracted in response to electrical stimulus. From these data, we concluded our proposed method is easy fabrication method of bioactuator having high design flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.