Abstract

In 2 experiments, dynamic systems theory predictions concerning intrinsic dynamics and variability of bimanual coordination were examined at different developmental stages. In Experiment 1, ten 4-, 6-, 7-, 8-, and 10-year-old children and adults performed unimanual dominant, unimanual nondominant, and bimanual continuous circle drawing. All tasks were performed at the participants' preferred rate, size, and mode of coordination. The 4-, 6-, and 7-year-old children produced larger circles with longer durations than those of the 8- and 10-year-olds and the adults. That finding demonstrates that younger children display different intrinsic dynamics than older children and adults. The 4-, 6-, and 7-year-old children also displayed more variability in bimanual coordination (more time in less stable patterns of coordination, higher standard deviation in relative phase) and produced more transitions between coordination patterns than the 8- and 10-year-olds and the adults. In Experiment 2, the same participants performed bimanual circles at increasing rates. Consistent with predictions of the HKB model (H. Haken, J. A. S. Kelso, & H. Bunz, 1985), the number of transitions decreased as speed increased. Some support was found for the notion that age-related variables of attention and rate contribute to the increased variability in young children's bimanual coordination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call