Abstract

Fetal malnutrition is now proposed as a risk factor of later obesity and type II diabetes. We previously analyzed the long-term impact of reduced protein and/or energy intake strictly limited to the last week of pregnancy in Wistar rats. Three protocols of gestational malnutrition were used: 1) low-protein isocaloric diet (5 instead of 15%) with pair feeding to the mothers receiving the control diet, 2) restricted diet (50% of control diet), and 3) low protein-restricted diet (50% of low-protein diet). Only isolated protein restriction induced a long-term beta-cell mass decrease. In the present study, we used the same protocols of food restriction to analyze their short-term impact (on day 21.5 of pregnancy) on beta-cell mass development. A 50% beta-cell mass decrease was present in the three restricted groups, but low-protein diet, either associated or not to energy restriction, increased fetal beta-cell insulin content. Among all the parameters analyzed to further explain our results, we found that the fetal plasma level of taurine was lowered by low-protein diet and was the main predictor of the fetal plasma insulin level (r = 0.63, P < 0.01). In conclusion, rat fetuses exposed to protein and/or energy restriction during the third part of pregnancy have a similar dramatic decrease in beta-cell mass, and their ability to recover beta-cell mass development retardation depends on the type of malnutrition used. Moreover, our results support the hypothesis that taurine might play an important role in fetal beta-cell mass function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call