Abstract

Although avian intrapulmonary chemoreceptors (IPC) have been studied extensively in adults, the maturation of IPC CO(2) sensitivity during development is completely unknown. To begin investigating IPC development we asked two fundamental questions: (1) Are IPC capable of sensing CO(2) during early development, and, if so, how early? And, (2) does IPC CO(2) sensitivity during early development exhibit postnatal maturation compared to IPC discharge characteristics in adult ducks? We addressed these questions by recording from single IPC Anas platyrhynchos ducklings beginning approximately 6 h prior to internal pipping through 4 days of postnatal development. We then compared mean IPC discharge characteristics during early development with mean IPC activity from adult ducks greater than 12 weeks old. In total, we recorded 28 individual IPC from 5 ducklings and 12 adult ducks. Results show that IPC were capable of responding to rapid step changes in CO(2) before hatching occurred, during the paranatal developmental period. We also found that mean IPC activity during early development had increased peak discharge frequencies, greater spike frequency adaptation, and less tonic CO(2) sensitivity when compared to adults (P< or =0.05). These results suggest that during early development phasic IPC CO(2) sensitivity is fully developed, yet tonic IPC CO(2) sensitivity exhibits postnatal maturation possibly associated with hatching. These results also suggest that the mechanisms that underlie phasic and tonic IPC action potential discharge, and therefore the degree of partial spike frequency adaptation, may be independent processes with different developmental trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.