Abstract

Autosomal recessive polycystic kidney disease (ARPKD) is a rare but devastating inherited disease in humans. Various strains of mice that are homozygous for the cpk gene display renal pathology similar to that seen in human ARPKD. The PKD progresses to renal insufficiency, azotemia, and ultimately a uremic death by approximately 3 wk of age. This study characterizes PKD in mice that are homozygous for the cpk gene on a BALB/c inbred mouse background. The BALB/c-cpk/cpk murine model displays renal as well as extrarenal pathology similar to that found in human ARPKD. The renal pathology includes the well-characterized early proximal tubule and, later, massive collecting duct cysts. The extrarenal defects in this murine model include common bile duct dilation, intrahepatic biliary duct cysts with periductal hyperplasia, and pancreatic dysplasia with cysts. Renal mRNA expression of c-myc, a proto-oncogene, and clusterin (SGP-2), a marker associated with immature collecting ducts, decreases during normal development but is upregulated in murine ARPKD. Expression of epidermal growth factor (EGF) mRNA is significantly diminished, whereas EGF receptor mRNA is upregulated in the BALB/c-cpk/cpk kidney compared with phenotypically normal littermates. To determine whether the altered EGF expression contributes to the development of PKD, neonatal mice were treated with exogenous EGF (1 microg/g body wt injected subcutaneously on postnatal days 3 through 9). EGF treatment reduced the relative kidney weight and common bile duct dilation and downregulated renal expression of clusterin and EGF receptor. However, exogenous EGF did not affect the degree of renal failure, the pancreatic pathology, or the misregulated renal expression of c-myc. In summary, the present study characterizes the renal and extrarenal pathology in the BALB/c-cpk/cpk murine model of ARPKD. Renal mRNA expression of EGF is diminished in this mouse model. EGF treatment did not prevent renal failure but ameliorated pathologic changes in the kidney and the biliary ducts of the BALB/c-cpk/cpk mouse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call