Abstract

AbstractWe have developed six convolutional neural network (CNN) models for finding optimal brain tumor detection system on high‐grade glioma and low‐grade glioma lesions from voluminous magnetic resonance imaging human brain scans. Glioma is the most common form of brain tumor. The models are constructed based on the different combinations and settings of hyperparameters with conventional CNN architecture. The six models are two layers with five epochs, five layers with dropout, five layers with stopping criteria (FLSC), FLSC and dropout (FLSCD), FLSC and batch normalization (FLSCBN), and FLSCBN and dropout. The models were trained and tested with BraTS2013 and whole brain atlas data sets. Among them, FLSCBN model yielded the best classification results for brain tumor detection. Experimental results revealed that our deep learning approach was better than the conventional state‐of‐art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.