Abstract

BackgroundHuman epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. However, current HER2 FISH procedures are labor intensive, manual methods that require skilled technologists and specialized fluorescence microscopy. Furthermore, FISH slides cannot be archived for long term storage and review. Our objective was to develop an automated brightfield double in situ hybridization (BDISH) application for HER2 gene and chromosome 17 centromere (CEN 17) and test the assay performance with dual color HER2 FISH evaluated breast carcinomas.MethodsThe BDISH assay was developed with the nick translated dinitrophenyl (DNP)-labeled HER2 DNA probe and DNP-labeled CEN 17 oligoprobe on the Ventana BenchMark® XT slide processing system. Detection of HER2 and CEN 17 signals was accomplished with the silver acetate, hydroquinone, and H2O2 reaction with horseradish peroxidase (HRP) and the fast red and naphthol phosphate reaction with alkaline phosphatise (AP), respectively. The BDISH specificity was optimized with formalin-fixed, paraffin-embedded xenograft tumors, MCF7 (non-amplified HER2 gene) and BT-474 (amplified HER2 gene). Then, the BDISH performance was evaluated with 94 routinely processed breast cancer tissues. Interpretation of HER2 and CEN 17 BDISH slides was conducted by 4 observers using a conventional brightfield microscope without oil immersion objectives.ResultsSequential hybridization and signal detection for HER2 and CEN 17 ISH demonstrated both DNA targets in the same cells. HER2 signals were visualized as discrete black metallic silver dots while CEN 17 signals were detected as slightly larger red dots. Our study demonstrated a high consensus concordance between HER2 FISH and BDISH results of clinical breast carcinoma cases based on the historical scoring method (98.9%, Simple Kappa = 0.9736, 95% CI = 0.9222 – 1.0000) and the ASCO/CAP scoring method with the FISH equivocal cases (95.7%, Simple Kappa = 0.8993%, 95% CI = 0.8068 – 0.9919) and without the FISH equivocal cases (100%, Simple Kappa = 1.0000%, 95% CI = 1.0000 – 1.0000).ConclusionAutomated BDISH applications for HER2 and CEN 17 targets were successfully developed and it might be able to replace manual two-color HER2 FISH methods. The application also has the potential to be used for other gene targets. The use of BDISH technology allows the simultaneous analyses of two DNA targets within the context of tissue morphological observation.

Highlights

  • Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy

  • HER2 FISH testing has exhibited a higher assay failure rate in the hands of some investigators when compared to HER2 IHC testing (5% vs. 0.08%), the FISH assay procedure time is longer than the IHC assay (36 hours vs. 4 hours), and the FISH interpretation time is longer than IHC interpretation time (7 minutes vs. 45 seconds) [1]

  • After single staining for HER2 gene or CEN 17 was optimized, the brightfield double in situ hybridization (BDISH) application with sequential detection for HER2 targets followed by CEN 17 targets was tested on xenograft tumors

Read more

Summary

Introduction

Human epidermal growth factor receptor 2 (HER2) fluorescence in situ hybridization (FISH) is a quantitative assay for selecting breast cancer patients for trastuzumab therapy. Quantitative HER2 fluorescence in situ hybridization (FISH) analyses for detecting HER2 gene amplification and semi-quantitative HER2 immunohistochemistry (IHC) analyses for detecting over-expressed HER2 protein are performed to determine the HER2 status of breast cancer patients. HER2 FISH testing has exhibited a higher assay failure rate in the hands of some investigators when compared to HER2 IHC testing (5% vs 0.08%), the FISH assay procedure time is longer than the IHC assay (36 hours vs 4 hours), and the FISH interpretation time is longer than IHC interpretation time (7 minutes vs 45 seconds) [1] Another disadvantage of the FISH assay is the difficulty of correlating cytomorphological aspects of the tissue sample with the gene status [13]. Some reports using proficiency testing surveys conducted by the College of American Pathologists have demonstrated a much higher concordance for FISH [16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call